

Curve DAO
Security Assessment
July 10th 2020

Prepared For:
Michael Egorov | Swiss Stake
michael@swiss-stake.com

Prepared By:
Josselin Feist | Trail of Bits
josselin@trailofbits.com

Gustavo Grieco | Trail of Bits
gustavo.grieco@trailofbits.com

Michael Colburn | Trail of Bits
michael.colburn@trailofbits.com

mailto:michael@swiss-stake.com
mailto:josselin@trailofbits.com
mailto:gustavo.grieco@trailofbits.com
mailto:michael.colburn@trailofbits.com

Executive Summary

Project Dashboard

Code Maturity Evaluation

Engagement Goals

Coverage

Recommendations Summary
Short term
Long term

Findings Summary
1. LiquidityGauge does not account for VotingEscrow’s balance updates
2. LiquidityGauge does not account for VotingEscrow’s totalSupply updates
3. Early users will have a unfair advantage
4. GaugeController allows for quick vote and withdraw voting strategy
5. Adding the same gauge multiple times will lead to incorrect sum of weights
6. Spam attack would prevent LiquidityGauge’s integral from being updated
7. Minter user can confiscate any user tokens
8. Mint and Burn events cannot be trusted
9. VotingEscrow’s Admin can take whitelisted accounts hostage
10. ERC20CRV is not initiated correctly with large name and symbol
11. Lack of two-step procedure for critical operations is error-prone
12. Lack of value verification on decimals is error-prone
13. Lack of events is error-prone
14. Race condition in removing addresses from whitelist and withdrawing
15. Lack of documentation is error-prone
16. VotingEscrow’s balanceOfAt and totalSupplyAt can return different values for the
same block
17. No incentive to vote early in GaugeController
18. Several loops are not executable due to gas limitation
19. Testing smart contract code in Brownie can be unreliable
20. Aragon’s voting does not follow voting best practices
21. Race condition may result in users earning less interest than expected

A. Vulnerability Classifications

B. Code Maturity Classifications

C. Code Quality

© 2020 Trail of Bits Curve DAO Assessment | 1

D. Token Integration Checklist
ERC Conformity
Contract Composition
Owner privileges
Token Scarcity

E. Fix Log
Detailed Fix Log

© 2020 Trail of Bits Curve DAO Assessment | 2

Executive Summary
From June 22 through July 10, 2020, Swiss-Stake engaged Trail of Bits to review the security
of Curve DAO. We conducted this assessment over the course of six person-weeks with
three engineers working from f1c8f43 from the curve-dao-contracts repository.

In the first two weeks, we focused on understanding the codebase and reviewing the
contracts against the most common smart contract flaws. In the final week, we reviewed
the checkpoint functions and LiquidityGauge bookkeeping, and looked for corner cases in
the most complex contract’s interactions.

Our review resulted in 21 findings ranging from high to informational severity. The most
significant findings are related to incorrect updating of the LiquidityGauge bonus, which
can allow attackers to earn unfair interest. Moreover, we found that the code would benefit
from better documentation, function composition, and code readability. We also found
potential risks related to out-of-gas consumption, and external risk introduced by the use
of Aragon's contracts. See additional code quality issues in Appendix C , and see
recommendations to follow when adding arbitrary tokens in Appendix D .

Overall, the codebase meets most of its security expectations. A significant effort has been
made to identify potential risks and to develop suitable mitigations and tests. However, the
codebase is very complex, numerous behaviors are not documented, and the arithmetic
operations would benefit from high-level clarifications.

Moving forward, Trail of Bits recommends addressing the findings presented and
increasing the documentation. Curve Dao must be careful with the deployment of the
contracts and the interactions of its early users and their advantages. We also recommend
considering an alternative to the Aragon voting contract. Finally, we recommend
performing an economic assessment to make sure the monetary incentives are properly
designed.

© 2020 Trail of Bits Curve DAO Assessment | 3

https://github.com/curvefi/curve-dao-contracts/commit/5cab2f79f0939e4f6887a5a71ff9fb1af0194217
https://github.com/curvefi/curve-dao-contracts

Project Dashboard
Application Summary

Name Curve Dao

Version f1c8f43

Type Vyper contracts

Platforms Ethereum

Engagement Summary

Dates June 22–July 10

Method Whitebox

Consultants Engaged 3

Level of Effort 6 person-weeks

Vulnerability Summary

Total High-Severity Issues 4 ◼◼◼◼

Total Medium-Severity Issues 8 ◼◼◼◼◼◼◼◼

Total Low-Severity Issues 4 ◼◼◼◼

Total Informational-Severity Issues 4 ◼◼◼◼

Total Undetermined-Severity Issues 1 ◼

Total 21

Category Breakdown

Access Controls 2 ◼◼

Auditing and Logging 3 ◼◼◼

Data Validation 13 ◼◼◼◼◼◼◼◼◼◼◼◼
◼

Patching 1 ◼

Timing 2 ◼◼

Total 21

© 2020 Trail of Bits Curve DAO Assessment | 4

https://github.com/curvefi/curve-dao-contracts/commit/5cab2f79f0939e4f6887a5a71ff9fb1af0194217

Code Maturity Evaluation
Category Name Description

Access Controls Satisfactory. The codebase has a strong access control
mechanism and we found only minor concerns.

Arithmetic Moderate. The system relies on complex arithmetic. While the
use of Vyper prevents overflow and underflow flaws, we found
several issues related to interest computation.

Centralization Moderate. The contracts’ owners have significant privileges.
Additionally, the deployer of ERC20CRV will own all the tokens
at deployment and will have a significant advantage.

Upgradeability Not Applicable.

Function Composition Moderate. Some components are written multiple times, and
the codebase would benefit from greater code reuse.

Front-Running Satisfactory. Most functions are not impacted by
front-running, or the impact is expected. We found only one
minor issue.

Monitoring Weak. We found that Mint and Burn events could be
compromised. Additionally, several components do not emit
events. Finally, we were not aware of any off-chain
components that monitor the contracts.

Specification Moderate. The provided documentation omitted several
behaviors, and the codebase would benefit from more
thorough documentation.

Testing & Verification Moderate. The codebase has several unit tests, but it is
missing gas evaluation. No verification of code was present.

© 2020 Trail of Bits Curve DAO Assessment | 5

Engagement Goals
The engagement was scoped to provide a security assessment of Curve DAO protocol
smart contracts in the curve-dao-contracts repository.

Specifically, we sought to answer the following questions:

● Are appropriate access controls set for the admin/user roles?
● Does arithmetic for internal bookkeeping operations hold?
● Is there any arithmetic overflow or underflow affecting the code?
● Can participants manipulate or block gauge or voting operations?
● Is it possible to manipulate gauges or voting by front-running transactions?
● Is it possible for participants to steal or lose tokens?
● Can participants perform denial-of-service attacks against any of the gauges or

voting escrow?

© 2020 Trail of Bits Curve DAO Assessment | 6

Coverage
The engagement focused on the following components:

● Liquidity gauges: These allow users to deposit liquidity using different ERC20

tokens and get CRV tokens based on the amount locked and other factors. We
reviewed the contract's interactions with users depositing liquidity to ensure proper
behavior. We looked for flaws that would allow an attacker to withdraw more than
deposited and prevent users from withdrawing their assets. We also focused on
interest rate computation and history catch-up.

● Controller gauge: Liquidity gauges are created and managed by a special contract
called the controller gauge. We reviewed the access control of this contract as well
as interaction with the gauges once deployed. We looked for flaws in voting and
checked for the proper increase of period and epoch.

● Voting escrow: Once users deposit liquidity, they can use mint tokens locked for a
period of time in the voting escrow contract. We reviewed the consistency and the
corner cases in computation of weights and verified that the locks are held in each
case. We looked for flaws that would allow an attacker to unlock a deposit early,
withdraw more than deposited, or prevent users from withdrawing their deposits.

● CRV Token and Minter: The liquidity gauge mints a CRV token every time it adds
liquidity to the gauge. This contract implements a standard ERC20 token. We verified
that all the expected properties are correctly implemented. We also looked for flaws
that would allow a minter to mint more than the time-limited supply, and we
reviewed the CRV token for its conformity to the ERC20 standard.

● Access controls. Many parts of the system expose privileged functionality, i.e.,
setting protocol parameters or managing gauges. We reviewed these functions to
ensure they can only be triggered by the intended actors and that they do not
contain unnecessary privileges that may be abused.

● Arithmetic. We reviewed calculations for logical consistency, as well as rounding
issues and scenarios where reverts due to overflow may negatively impact use of
the protocol.

We briefly reviewed the Curve DAO external interactions with the Aragon contracts ,
however, their upgradability and external dependency risks were considered out of scope.

Additionally, we briefly reviewed the Airdrop contract and looked for the most common
smart contract flaws.

Off-chain code components were outside the scope of this assessment.

© 2020 Trail of Bits Curve DAO Assessment | 7

https://github.com/aragon/aragon-apps/blob/94e18113497971a09697c773bc241a76c284c87a/apps/voting/contracts/Voting.sol
https://github.com/curvefi/airdrop_escrow/blob/e6eac17b2e6143b4c9356c6bc9bc54675024ea72/contracts/AirdropEscrow.vy

Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short term
❑ Prevent users from earning interest after their VotingEscrow lock expires. Consider
either:

● Removing the bonus based on the locked tokens, or
● Adding watchers that will penalize users cheating the system, or
● Integrating the locking end time in the bonus computation.

Users are able to sell or re-lock expired tokens while still earning interest for these tokens
(TOB-CURVE-DAO-001).

❑ Since VotingEscrow ’s total supply constantly changes in the interest rate bonus,
consider either:

● Removing the bonus based on locked tokens, or
● Updating the formulas to take updates of the total supply into account.

The interest rate percentage is based on VotingEscrow ’s total supply, which changes
constantly, and users can game the system to earn more of a bonus than expected
(TOB-CURVE-DAO-002).

❑ Since early users will have an unfair interest rate advantage, consider either:

● Removing the bonus based on the locked tokens, or
● Clearly documenting that early users have a system advantage.

Any user advantage must be properly considered (TOB-CURVE-DAO-003).

❑ Prevent the quick vote and withdraw strategy in GaugeController . Consider
implementing either:

1. A weighted stake, with the weight decreasing over time, or
2. A locking period after weight’s update.

A quick vote and withdraw strategy allows a votes weight to be higher than expected in all
the gauge’s votes (TOB-CURVE-DAO-004).

❑ Disallow adding the same gauge twice and add proper documentation to ensure
the administrator is aware of the procedure to change some gauge weight liquidity.

© 2020 Trail of Bits Curve DAO Assessment | 8

Adding the same gauge multiple times will corrupt the gauges’ weights
(TOB-CURVE-DAO-005).

❑ Ensure that the LiquidityGauge’s parameters always lead rate * last_weight to
be greater than _working_supply . Rounding to zero will allow attackers to spam the
gauge and prevent users from earning interest (TOB-CURVE-DAO-006).

❑ Remove the minter's permission to take tokens from other users, or properly
document why this is necessary. This will prevent users from distrusting the contracts
(TOB-CURVE-DAO-007).

❑ Use dedicated events for minting and burning, or don’t allow users to fake
Transfer events . This will prevent confusion when events are used by off-chain
components (TOB-CURVE-DAO-008).

❑ Make sure users are aware that admin privileges can take whitelisted accounts
hostage. This will help users better understand the risks of interacting with this contract
(TOB-CURVE-DAO-009).

❑ Check the length of the token’s name and symbol in ERC20CRV . This will prevent the
contract from returning an unexpected name or symbol (TOB-CURVE-DAO-010).

❑ Use a two-step procedure for all non-recoverable critications. This will reduce the
possibility of mistakes when the users are executing critical operations
(TOB-CURVE-DAO-011).

❑ Either use a bit mask on the return of decimals, or revert if the value is greater
than 255 in VotingEscrow . This will prevent the contract from returning an unexpected
number of decimals (TOB-CURVE-DAO-012).

❑ Add events for all critical operations to monitor the contracts and detect suspicious
behavior. Missing events are listed in TOB-CURVE-DAO-013 .

❑ Document how to deal with whitelist removal. Consider:

● Calling remove_from_whitelist when tokens are still locked (so the attacker cannot
withdraw them, even after the lock expires).

● Increase the amount of gas when calling remove_from_whitelist to reduce the
window of opportunity for this issue.

This will help reduce an attacker’s window of opportunity to move their tokens
(TOB-CURVE-DAO-014).

© 2020 Trail of Bits Curve DAO Assessment | 9

❑ Increase the documentation, including all the identified missing behavior
descriptions. This will help users and auditors understand the system better
(TOB-CURVE-DAO-015).

❑ Document balanceOfAt and totalSupplyAt must not be called on the current block.
This will prevent users from misusing the balanceOfAt and totalSupplyAt functions
(TOB-CURVE-DAO-016).

❑ Create an incentive to vote early in GaugeController . Consider using either:

● A decreasing weight to create an advantage for early voters, or
● A blind vote.

The lack of an incentive encourages voting at the very last minute and penalizes early
voters (TOB-CURVE-DAO-017).

❑ Reduce the risks associated with out-of-gas issues.

● Allow users to execute the history catch-up in VotingEscrow._checkpoint without
depositing or withdrawing the lock.

● Create a bot that will call LiquidityGauge.user_checkpoint and the
VotingEscrow’s history catch-up function at least once per week.

● Consider allowing iteration over the periods in multiple transactions in
GaugeController.

Several contracts can be trapped if they are not called for a long time, or if
GaugeController lists too many gauges (TOB-CURVE-DAO-018).

❑ Improve Brownie test capabilities:

● Modify Brownie to disallow automatic increase of the block timestamp and number.
● Set a reasonable default for the maximum gas used per transaction during tests.

This will improve testing of corner cases in the code where operations are executed in the
same block or use a large amount of gas (TOB-CURVE-DAO-019).

❑ Do not use the original Aragon contract. Consider:

● Improving Aragon’s voting to mitigate the issues listed in TOB-CURVE-DAO-020 .
● Implementing a voting contract to replace Aragon's. Perform a security assessment

on the contract before deployment.
Aragon’s voting contract does not meet the security requirements for Curve Dao
(TOB-CURVE-DAO-020).

❑ Add a parameter to LiquidityGauge.deposit to specify the minimal amount of
interest to receive, or make sure off-chain components take changes in the bonus
into account. This will prevent users from receiving less interest than expected
(TOB-CURVE-DAO-021).

© 2020 Trail of Bits Curve DAO Assessment | 10

Long term
❑ Write clear documentation of the different components’ interactions and the
dependencies of the assets, and consider an economical assessment. This will help
users and auditors to better understand how the contracts work (TOB-CURVE-DAO-001 ,
TOB-CURVE-DAO-002 , TOB-CURVE-DAO-003).

❑ Properly document the GaugeController ’s voting process. This will help prevent
misconceptions of how users are allowed to use their voting weight (TOB-CURVE-DAO-004 ,
TOB-CURVE-DAO-017 TOB-CURVE-DAO-020).

❑ Follow closely the progress made by the community on on-chain voting .
Blockchain-based online voting is a known challenge. No perfect solution has been found
so far and the domain evolves quickly (TOB-CURVE-DAO-004 , TOB-CURVE-DAO-017
TOB-CURVE-DAO-020).

❑ Identify, review, and minimize the permissions assigned to each privileged user,
and make sure users can access the information. This will mitigate any potential private
key compromise and increase the trust users have in your contracts (TOB-CURVE-DAO-007 ,
TOB-CURVE-DAO-009 , TOB-CURVE-DAO-011).

❑ Use a blockchain monitoring system to track any suspicious behavior in the
contracts. The system relies on the correct behavior of several contracts. A monitoring
system that tracks critical events and upfront-running would quickly detect any
compromised system components (TOB-CURVE-DAO-008 , TOB-CURVE-DAO-013 ,
TOB-CURVE-DAO-014).

❑ Carefully review Vyper’s security advisories, open issues, and the current language
limitations. This will mitigate the risk of introducing issues caused by the compiler
(TOB-CURVE-DAO-010 , TOB-CURVE-DAO-012).

❑ Create an incident response plan . This will help reduce response time in case of
security incidents (TOB-CURVE-DAO-014).

❑ Review the contract’s complete documentationand simplify its use. This will
mitigate the possibility of function misuse (TOB-CURVE-DAO-015).

❑ Properly test system properties when functions are called in the same block or
within a short period. This will prevent unexpected results when functions are called with
a small time interval (TOB-CURVE-DAO-016).

❑ Improve the support of out-of-gas scenarios due to loop iterations:

© 2020 Trail of Bits Curve DAO Assessment | 11

● Test the functions for their gas limit.
○ Use brownie test with the --gas flag.
○ Use the Echidna gas fuzzing feature .

● Update GaugeController ’s logic to work with a large number of periods.
This will help detect issues caused by very high gas consumption before deployment
(TOB-CURVE-DAO-018).

❑ Carefully consider the unpredictable nature of Ethereum transactions and design
your contracts so they don’t depend on the transaction’s ordering. An attacker can
control the order of the transactions to attack the system (TOB-CURVE-DAO-021).

❑ Use a lower or higher bound on asset conversions. An attacker can control the order
of the transactions to change the outcome of asset conversion (TOB-CURVE-DAO-021).

❑ Use use Echidna and Manticore to test and verify:

● Time-dependent code (TOB-CURVE-DAO-006 , TOB-CURVE-DAO-019)
● High–gas-consuming code (TOB-CURVE-DAO-019)
● Gauge administration functions (TOB-CURVE-DAO-005)

Several issues were found in these areas, and automated testing and verification will
prevent similar issues.

© 2020 Trail of Bits Curve DAO Assessment | 12

https://github.com/crytic/building-secure-contracts/blob/master/program-analysis/echidna/finding-transactions-with-high-gas-consumption.md
https://github.com/crytic/echidna
https://github.com/trailofbits/manticore

Findings Summary
Title Type Severity

1 LiquidityGauge does not account for
VotingEscrow ’s balance updates

Data Validation Medium

2 LiquidityGauge does not account for
VotingEscrow ’s totalSupply updates

Data Validation Medium

3 Early users will have a unfair advantage Data Validation Medium

4 GaugeController allows for quick vote
and withdraw voting strategy

Data Validation Medium

5 Adding the same gauge multiple times
will lead to incorrect sum of weights

Data Validation Medium

6 Spam attack would prevent
LiquidityGauge ’s integratal from being
updated

Timing Medium

7 Minter user can confiscate any user
tokens

Access Controls High

8 Mint and Burn events cannot be trusted Auditing and
Logging

Low

9 VotingEscrow ’s Admin can take
whitelisted accounts hostage

Access Controls Medium

10 ERC20CRV is not initiated correctly with
large name and symbol

Data Validation Low

11 Lack of two-step procedure for critical
operations is error-prone

Data Validation High

12 Lack of value verification on decimals is
error-prone

Data Validation Low

13 Lack of events is error-prone Auditing and
Logging

Informational

14 Race condition in removing addresses
from whitelist and withdrawing

Timing Informational

15 Lack of documentation is error-prone Auditing and
Logging

Informational

© 2020 Trail of Bits Curve DAO Assessment | 13

16 VotingEscrow ’s balanceOfAt and
totalSupplyAt can return different
values for the same block

Data Validation Low

17 No incentive to vote early in
GaugeController

Data Validation Medium

18 Several loops are not executable due to
gas limitation

Data Validation High

19 Testing smart contract code in Brownie
can be unreliable

Patching Undetermined

20 Aragon’s voting does not follow voting
best practices

Data Validation High

21 Race condition may result in users
earning less interest than expected

Data Validation Informational

© 2020 Trail of Bits Curve DAO Assessment | 14

1. LiquidityGauge does not account for VotingEscrow ’s balance
updates
Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-CURVE-DAO-001
Target: LiquidityGauge.vy

Description
VotingEscrow ’s balance update is not accounted for in LiquidityGauge , so an attacker can
earn more interest than they should by moving their VotingEscrow tokens.

LiquidityGauge computes the interest earned by users. A bonus is applied for
VotingEscrow token holders:

def _update_liquidity_limit (addr: address, l: uint256, L : uint256):
 # To be called after totalSupply is updated
 _voting_escrow: address = self.voting_escrow
 voting_balance: uint256 = ERC20 (_voting_escrow). balanceOf (addr)
 voting_total: uint256 = ERC20 (_voting_escrow). totalSupply ()

 lim: uint256 = l * 20 / 100
 if voting_total > 0 :
 lim += L * voting_balance / voting_total * 80 / 100

 lim = min (l, lim)

Figure 1.1: LiquidityGauge.vy#L75-L88 .

Users receive VotingEscrow tokens by locking their CRV tokens for a given period of time.
Once the locking period is complete, they can withdraw their tokens.

The withdrawal of VotingEscrow tokens does not decrease the bonus applied to the
interest rate in LiquidityGauge . As a result, an attacker can make a profit by re-using the
tokens in the system to earn more interest, or by selling them while still earning the
interest.

Exploit Scenario
The system has four users. Three of them have the same amount of liquidity tokens (100)
and CRV locked (100):

● Alice: 100 LT, 100 Locked: working_balance = 60
● Bob: 100 LT, 100 Locked: working_balance = 60
● Eve 1: 50 LT, 100 Locked: working_balance = 50
● Eve 2: 50 LT, 0 Locked: working_balance = 10
● Carl: 0 LT, 300 Locked: working_balance = 60

© 2020 Trail of Bits Curve DAO Assessment | 15

Once the lock on Eve’s first account ends, she deposits the CRV tokens in her second
account. As a result, she has two accounts with a total working balance of 100 units when
she should earn only 60 units.

Recommendation
Short term, consider either:

1. Removing the bonus based on the locked tokens,
2. Adding watchers that will penalize users cheating the system, or
3. Integrating the locking end time in the bonus computation.

Solutions (2) and (3) require significant modifications in the codebase and should be
implemented with caution. Issues TOB-CURVE-DAO-002 and TOB-CURVE-DAO-003 must be
considered when implementing the fix.

Long term, write clear documentation of the different components’ interactions and the
dependencies of the assets. Consider an economical assessment.

© 2020 Trail of Bits Curve DAO Assessment | 16

2. LiquidityGauge does not account for VotingEscrow ’s
totalSupply updates
Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-CURVE-DAO-002
Target: LiquidityGauge.vy

Description
VotingEscrow ’s totalSupply update is not accounted for in LiquidityGauge . As a result,
users will not earn the expected interest.

LiquidityGauge computes the interest earned by users. A bonus is applied to
VotingEscrow token’s holder:

def _update_liquidity_limit (addr: address, l: uint256, L : uint256):
 # To be called after totalSupply is updated
 _voting_escrow: address = self.voting_escrow
 voting_balance: uint256 = ERC20 (_voting_escrow). balanceOf (addr)
 voting_total: uint256 = ERC20 (_voting_escrow). totalSupply ()

 lim: uint256 = l * 20 / 100
 if voting_total > 0 :
 lim += L * voting_balance / voting_total * 80 / 100

 lim = min (l, lim)

Figure 2.1: LiquidityGauge.vy#L75-L88 .

The bonus is based on a percentage of a user’s VotingEscrow ’s tokens. VotingEscrow can
be minted and burned at any moment, changing totalSupply .

As a result, the interest bonus given when LiquidityGauge is called does not reflect the
real percentage over time. This might result in unexpected opportunities.

Exploit Scenario
Bob has 20% of the VotingEscrow locked tokens. Bob starts earning interest in
LiquidityGauge . After a few days, the other users unlock their tokens. Bob now has 40%
of the locked tokens, but he continues to earn interest based on 20%.

Recommendation
Short term, consider either:

1. Removing the bonus based on locked tokens, or
2. Updating the formulas to account for the total supply updates.

© 2020 Trail of Bits Curve DAO Assessment | 17

The second option may not be straightforward to implement and may require significant
change. Issues TOB-CURVE-DAO-001 and TOB-CURVE-DAO-003 must be considered when
implementing the fix.

Long term, write clear documentation of the different components’ interactions and the
asset dependencies. Consider an economical assessment.

© 2020 Trail of Bits Curve DAO Assessment | 18

https://docs.google.com/document/d/17Ya1OouwW5bF5gLSd-VciC3Ufp6FWHQCCzOtMYkWXs4/edit#heading=h.ldbehaglyepu

3. Early users will have a unfair advantage
Severity: Medium Difficulty: Medium
Type: Data Validation Finding ID: TOB-CURVE-DAO-003
Target: LiquidityGauge.vy

Description
The VotingEscrow ’s bonus for earned interest gives an unfair advantage to early users.

LiquidityGauge distributes a bonus based on the user’s VotingEscrow token percentage:

def _update_liquidity_limit (addr: address, l: uint256, L : uint256):
 # To be called after totalSupply is updated
 _voting_escrow: address = self.voting_escrow
 voting_balance: uint256 = ERC20 (_voting_escrow). balanceOf (addr)
 voting_total: uint256 = ERC20 (_voting_escrow). totalSupply ()

 lim: uint256 = l * 20 / 100
 if voting_total > 0 :
 lim += L * voting_balance / voting_total * 80 / 100

 lim = min (l, lim)

Figure 3.1: LiquidityGauge.vy#L75-L88 .

At launch, the ERC20CRV contract has 100% of the token supply, so it and the first token
receivers can receive a significant and unfair bonus on their interest.

Combined with TOB-CURVE-DAO-001 , this issue will allow early users to earn significant
profits.

Exploit Scenario
Eve deploys the system, locks half of the supply, and only puts the other half in distribution.
As a result, Eve earns significantly more interest than any other user.

Recommendation
Short term, consider either:

● Removing the bonus based on the locked tokens, or
● Clearly documenting that early users will have an advantage in the system.

Issues TOB-CURVE-DAO-001 and TOB-CURVE-DAO-002 must be considered when
implementing the fix.

© 2020 Trail of Bits Curve DAO Assessment | 19

Long term, write clear documentation of the different components’ interactions and the
asset dependencies. Consider an economical assessment.

© 2020 Trail of Bits Curve DAO Assessment | 20

4. GaugeController allows for quick vote and withdraw voting strategy
Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-CURVE-DAO-004
Target: GaugeController.vy

Description
The GaugeController voting can be abused to apply all of the user’s weight in every
gauge’s vote.

GaugeController ’s voting changes the weight of the gauges. Each user can split their
voting weight power between the gauges:

def vote_for_gauge_weights (_gauge_id: int128, _user_weight: int128):
 [..]
 @param _user_weight Weight for a gauge in bps (units of 0.01%). Minimal is
0.01%. Ignored if 0
 [..]
 assert (_user_weight >= 0) and (_user_weight <= 10000), "You used all your
voting power"
 [..]
 new_slope: VotedSlope = VotedSlope ({
 slope: slope * _user_weight / 10000 ,
 end: lock_end,
 power: _user_weight
 })

 [..]

Figure 4.1: GaugeController.vy#L359-L384 .

The sum of all the weight used must not exceed 10,000:

 # Check and update powers (weights) used
 power_used: int128 = self.vote_user_power[msg.sender]
 power_used += (new_slope.power - old_slope.power)
 self.vote_user_power[msg.sender] = power_used
 assert (power_used >= 0) and (power_used <= 10000), 'Used too much power'

Figure 4.2: GaugeController.vy#L388-L392 .

A gauge’s weight can be updated every week:

def _enact_vote (_gauge_id: int128):

 now: uint256 = as_unitless_number (block.timestamp)

 ts: uint256 = self.vote_enacted_at[_gauge_id]

© 2020 Trail of Bits Curve DAO Assessment | 21

 if (ts + WEEK) / WEEK * WEEK <= block.timestamp:

 # Update vote_point

Figure 4.3: GaugeController.vy#L324-L329 .

There is no incentive to vote early, and no lock to prevent a user from removing their
weight after a vote. As a result, an attacker can put 100% of its voting power (10,000) on a
gauge’s vote, and remove it right afterwards to re-use all its voting power on another vote.

Exploit Scenario
The system has three gauges. Eve has 1,000,000 tokens locked for two months. On every
gauge’s vote:

● Eve calls vote_for_gauge_weights with a voting power of 10,000 (100%) just before

the vote ends.
● Once the vote ends, Eve calls vote_for_gauge_weights with a voting power of 0.

Eve uses all her voting power for all the gauges’ votes. As a result, Eve manipulates the
weights’ updates more than she should.

Recommendation
Blockchain-based online voting is a known challenge. No perfect solution has been found
so far. Short term, consider either:

1. Implementing a weighted stake, with weight decreasing over time, or
2. Implementing a locking period after the weight update.

Long term, properly document and test the voting process. Closely follow the progress
made by the community on on-chain voting.

References

● Aragon vote shows the perils of on-chain governance

© 2020 Trail of Bits Curve DAO Assessment | 22

https://www.evanvanness.com/post/184616403861/aragon-vote-shows-the-perils-of-onchain-governance

5. Adding the same gauge multiple times will lead to incorrect sum of
weights
Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-CURVE-DAO-005
Target: GaugeController.vy

Description
The administrator can add the same gauge multiple times in the controller, leaving the
contract in an invalid state.

The Gauge Controller contract allows its administrator to add liquidity gauges using the
add_gauge function:

@public

def add_gauge (addr: address, gauge_type: int128, weight: uint256 = 0):

 assert msg.sender == self.admin

 assert (gauge_type >= 0) and (gauge_type < self.n_gauge_types)

 # If someone adds the same gauge twice, it will override the previous one

 # That's probably ok

 if self.gauge_types_[addr] == 0 :

 n: int128 = self.n_gauges

 self.n_gauges = n + 1

 self.gauges[n] = addr

 self.gauge_types_[addr] = gauge_type + 1

Figure 5.1: GaugeController.vy#L120-L132 .

However, contrary to what the code comment suggests, it is possible to lead the contract
into an invalid state if the administrator adds the same gauge twice:

© 2020 Trail of Bits Curve DAO Assessment | 23

@public

def add_gauge (addr: address, gauge_type: int128, weight: uint256 = 0):

 …

 self.type_weights[gauge_type][p] = _type_weight

 self.gauge_weights[addr][p] = weight

 self.weight_sums_per_type[gauge_type][p] = weight + old_sum

 if epoch_changed:

 self.total_weight[p -1] = self.total_weight[p -2]

 self.total_weight[p] = self.total_weight[p -1] + _type_weight * weight

 self.period_timestamp[p] = block.timestamp

Figure 5.2: GaugeController.vy#L154-L160 .

The total_weight and the weight_sums_per_type will be incorrectly computed, since they
will be increased by the weight a second time.

Exploit Scenario
Eve is the administrator of the gauge controller contract. Eve adds the same gauge twice
and corrupts the other weight’s percentage. As a result, users receive less interest than
expected.

Recommendation
Short term, disallow adding the same gauge twice. Add proper documentation to ensure
the administrator is aware of the procedure to change some gauge weight liquidity.

Long term, use Echidna and Manticore to ensure that the gauge administration functions
are properly implemented.

© 2020 Trail of Bits Curve DAO Assessment | 24

https://github.com/crytic/echidna
https://github.com/trailofbits/manticore

6. Spam attack would prevent LiquidityGauge ’s integral from being
updated
Severity: Medium Difficulty: High
Type: Timing Finding ID: TOB-CURVE-DAO-006
Target: LiquidityGauge.vy

Description
An attacker spamming LiquidityGauge can prevent the integral from being updated. As a
result, users will not earn interest.

On every balance’s update, LiquidityGauge._checkpoint is executed and updates the
integral based on the time elapsed since the last update:

@private
def _checkpoint (addr: address):
 _integrate_checkpoint: timestamp = self.integrate_checkpoint
 [..]
 dt = as_unitless_number (block.timestamp - _integrate_checkpoint)
 [..]
 _integrate_inv_supply += rate * last_weight * dt / _working_supply

Figure 6.1: LiquidityGauge.vy#L92-L146 .

If rate * last_weight * dt < _working_supply , the integral will not be updated.
Dt is the time elapsed since the last call to _checkpoint and is directly controllable by the
caller.

An attacker can prevent the integral from being updated by calling the contract frequently.
The attack is partially mitigated by the gas cost, but miners can perform the attack without
paying any gas.

Exploit Scenario
Eve is a malicious miner, and adds a call to LiquidityGauge on every block. As a result, Eve
prevents the LiquidityGauge from earning interest.

Recommendation
Short term, ensure that the system’s parameters always make rate * last_weight
greater than _working_supply.

Long term, take in consideration short and long times period increase in the tests, and
consider using Echidna and Manticore to identify unexpected behaviors allowed by these
increases.

© 2020 Trail of Bits Curve DAO Assessment | 25

https://github.com/crytic/echidna
https://github.com/trailofbits/manticore

7. Minter user can confiscate any user tokens
Severity: High Difficulty: High
Type: Access Controls Finding ID: TOB-CURVE-DAO-007
Target: ERC20CV.vy

Description
ERC20CV ’s minter has the unexpected right to move tokens from any users, increasing the
risks associated with the minter account.

The administrator of the contract can design a special user called a minter :

@public

def set_minter (_minter: address):

 assert msg.sender == self.admin # dev: admin only

 self.minter = _minter

Figure 7.1: ERC20CV.vy#L143-L146 .

This privileged user can be wielded to mint new tokens:

@public

def mint (_to: address, _value: uint256):

 """

 @dev Mint an amount of the token and assigns it to an account.

 This encapsulates the modification of balances such that the

 proper events are emitted.

 @param _to The account that will receive the created tokens.

 @param _value The amount that will be created.

 """

 assert msg.sender == self.minter # dev: minter only

 assert _to != ZERO_ADDRESS # dev: zero address

 if block.timestamp >= self.start_epoch_time + RATE_REDUCTION_TIME :

 self. _update_mining_parameters ()

 _total_supply: uint256 = self.total_supply + _value

 assert _total_supply <= self. _available_supply () # dev: exceeds allowable mint amount

 self.total_supply = _total_supply

© 2020 Trail of Bits Curve DAO Assessment | 26

 self.balanceOf[_to] += _value

 log. Transfer (ZERO_ADDRESS , _to, _value)

Figure 7.2: ERC20CRV.vy#L230-L250 .

However, it is also possible to use the minter to take tokens from other user accounts,
since the transferFrom function has an allowance bypass hardcoded for the minter user:

@public

def transferFrom (_from : address, _to : address, _value : uint256) -> bool:

 """

 @dev Transfer tokens from one address to another.

 Note that while this function emits a Transfer event, this is not required as per

the specification,

 and other compliant implementations may not emit the event.

 @param _from address The address which you want to send tokens from

 @param _to address The address which you want to transfer to

 @param _value uint256 the amount of tokens to be transferred

 """

 # NOTE: vyper does not allow underflows

 # so the following subtraction would revert on insufficient balance

 self.balanceOf[_from] -= _value

 self.balanceOf[_to] += _value

 if msg.sender != self.minter: # minter is allowed to transfer anything

 # NOTE: vyper does not allow underflows

 # so the following subtraction would revert on insufficient allowance

 self.allowances[_from][msg.sender] -= _value

 log. Transfer (_from, _to, _value)

 return True

Figure 7.3: ERC20CRV.vy#L253-L263 .

Exploit Scenario
A malicious admin can silently change the minter address to steal tokens from users.

Recommendation
Short term, remove the minter ’s permission to take tokens from other users or properly
document why this is necessary.

© 2020 Trail of Bits Curve DAO Assessment | 27

Long term, review and minimize the permissions assigned to each privileged user. This will
mitigate any potential private key compromise and increase the trust from users in your
contracts.

© 2020 Trail of Bits Curve DAO Assessment | 28

8. Mint and Burn events cannot be trusted
Severity: Low Difficulty: Low
Type: Auditing and Logging Finding ID: TOB-CURVE-DAO-008
Target: ERC20CV.vy

Description
Events associated with mint and burn calls can be produced even if these functions are not
called.

The ERC20CRV contract uses special Transfer events to signal the call to mint :

@public

def mint (_to: address, _value: uint256):

 """

 @dev Mint an amount of the token and assigns it to an account.

 This encapsulates the modification of balances such that the

 proper events are emitted.

 @param _to The account that will receive the created tokens.

 @param _value The amount that will be created.

 """

 assert msg.sender == self.minter # dev: minter only

 assert _to != ZERO_ADDRESS # dev: zero address

 if block.timestamp >= self.start_epoch_time + RATE_REDUCTION_TIME :

 self. _update_mining_parameters ()

 _total_supply: uint256 = self.total_supply + _value

 assert _total_supply <= self. _available_supply () # dev: exceeds allowable mint amount

 self.total_supply = _total_supply

 self.balanceOf[_to] += _value

 log. Transfer (ZERO_ADDRESS , _to, _value)

Figure 8.1: ERC20CV.vy#L230-L250 .

 And burn :

@public

© 2020 Trail of Bits Curve DAO Assessment | 29

def burn (_value: uint256) -> bool:

 """

 @dev Burn an amount of the token of msg.sender.

 @param _value The amount that will be burned.

 """

 self.balanceOf[msg.sender] -= _value

 self.total_supply -= _value

 log. Transfer (msg.sender, ZERO_ADDRESS , _value)

 return True

Figure 8.2: ERC20CV.sol#L253-L263 .

However, in certain situations, these events can be produced even without calling such
functions:

● Transfer(…, 0x0, …) can be produced by any user transferring to the 0x0

address.
● Transfer(0x0, …, …) can be produced by the minter user when it employs the

transferFrom function to recover tokens from 0x0 .

Exploit Scenario
Alice implements an off-chain component to interact with the Curve contract relying on the
events. However, Eve triggers a transfer to 0x0 , so Alice’s code does not work as expected.

Recommendation
Short term, use dedicated events for minting and burning, or don’t allow users to fake
Transfer events.

Long term, consider using a blockchain monitoring system to track any suspicious behavior
in the contracts. The system relies on the correct behavior of several contracts, and a
monitoring system that tracks critical events would quickly detect of any compromised
system components.

© 2020 Trail of Bits Curve DAO Assessment | 30

9. VotingEscrow ’s Admin can take whitelisted accounts hostage
Severity: Medium Difficulty: High
Type: Access Controls Finding ID: TOB-CURVE-DAO-009
Target: VotingEscrow.vy

Description
VotingEscrow ’s admin can allow or disallow any contract to interact with VotingEscrow . A
malicious owner can use this feature to ask for a ransom from VotingEscrow ’s users.

@public
def add_to_whitelist (addr: address):
 assert msg.sender == self.admin
 self.contracts_whitelist[addr] = True

@public
def remove_from_whitelist (addr: address):
 assert msg.sender == self.admin
 self.contracts_whitelist[addr] = False

Figure 9.1: VotingEscrow.vy#L90-L99 .

Exploit Scenario
Eve is a malicious VotingEscrow owner. Eve allows Bob to use VotingEscrow’s multisig
wallet. Bob deposits $1,000,000 worth of assets in the contract. Eve revokes Bob from the
whitelist, and asks him to pay $100,000 in ransom to withdraw its funds, which he does.

Recommendation
Short term, make sure users are aware of this risk.

Long term, identify and document all possible actions for privileged accounts. Ensure users
can easily identify the risks associated with every privileged account.

© 2020 Trail of Bits Curve DAO Assessment | 31

10. ERC20CRV is not initiated correctly with large name and symbol
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-CURVE-DAO-010
Target: ERC20CRV.vy

Description
Vyper does not check the length of the string it receives and only keeps the destination
size’s number of elements. As a result, if ERC20CRV is initiated with a large name or symbol ,
it will have an incorrect value.

name: public (string[64])
symbol: public (string[32])

Figure 10.1: ERC20CRV.vy#L12-L13 .

Exploit Scenario
Bob deploys ERC20CRV with a name of 65 characters, but only the first 64 characters are
kept, so the token is deployed incorrectly.

Recommendation
Short term, check the length of the string.

Long term, carefully review Vyper’s open issues and current language limitations.

References

● vyper#1840

© 2020 Trail of Bits Curve DAO Assessment | 32

https://github.com/vyperlang/vyper/issues/1840

11. Lack of two-step procedure for critical operations is error-prone
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-CURVE-DAO-011
Target: VotingEscrow.vy, PoolProxy.vy, GaugeController.vy

Description
Several critical operations are done in one function call. This schema is error-prone and can
lead to irrevocable mistakes.

For example, VotingEscrow.transfer_ownership changes the contract’s owner without
any verification:

@public
def transfer_ownership (addr: address):
 assert msg.sender == self.admin
 self.admin = addr

Figure 11.1: VotingEscrow.vy#L84-L87 .

As a result, if the admin sends an incorrect value, it will not be possible to recover the
system.

Functions that would benefit from a two-step procedure include:

● VotingEscrow.transfer_ownership (VotingEscrow.vy#L84-L87)
● PoolProxy.set_admins (PoolProxy.vy#L40)

● GaugeController.transfer_ownership (GaugeController.vy#L80)

Exploit Scenario
Bob calls VotingEscrow.transfer_ownership but does not set the addr parameter. As a
result, the new admin is the address 0x0 , and Bob loses ownership of the contract.

Recommendation
Short term, use a two-step procedure for all non-recoverable critications.

Long term, identify and document all possible actions and their associated risks for
privileged accounts.

© 2020 Trail of Bits Curve DAO Assessment | 33

12. Lack of value verification on decimals is error-prone
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-CURVE-DAO-012
Target: VotingEscrow.vy

Description
The lack of uint8 type in Vyper requires that all return values of erc20. decimals() calls are
checked.

VotingEscrow calls decimals() without checking the return value:

self.decimals = ERC20 (token_addr). decimals ()

Figure 12.1: VotingEscrow.vy#L78 .

ERC20.decimals() returns a uint8 , but this type is not handled by Vyper. As a result, the
decimal value used could be invalid.

Exploit Scenario
Eve deploys a token with decimals of 520. It’s decimals are read as 8 by the Solidity
contract, but 520 by VotingEscrow . As a result, VotingEscrow ’s usage is incorrect.

Recommendation
Short term, either use a bit mask on the return of decimals, or revert if the value is greater
than 255.

Long term, carefully review Vyper’s security advisories and the current language limitations.

References

● VVE-2020-0001: Interfaces returning integer types less than 256 bits can be
manipulated if uint256 is used

© 2020 Trail of Bits Curve DAO Assessment | 34

https://eips.ethereum.org/EIPS/eip-20
https://github.com/vyperlang/vyper/security/advisories/GHSA-mr6r-mvw4-736g
https://github.com/vyperlang/vyper/security/advisories/GHSA-mr6r-mvw4-736g
https://github.com/vyperlang/vyper/security/advisories/GHSA-mr6r-mvw4-736g
https://github.com/vyperlang/vyper/security/advisories/GHSA-mr6r-mvw4-736g

13. Lack of events is error-prone
Severity: Informational Difficulty: Low
Type: Auditing and Logging Finding ID: TOB-CURVE-DAO-013
Target: All contracts

Description
Several critical operations do not trigger events. As a result, it will be difficult to review the
correct behavior of the contracts once deployed.

Critical operations that would benefit from triggering events include:

● PoolProxy.set_admins (PoolProxy.vy#L40)

● PoolProxy.set_burner (PoolProxy.vy#50)

● ERC20CRV.update_mining_parameters (ERC20CRV.vy#L71)

● ERC20CRV.set_minter (ERC20CRV.vy#144)

● ERC20CRV.set_admin (ERC20CRV.vy#150)

● GaugeController.transfer_ownership (GaugeController.vy#L80)

● GaugeController._change_type_weight (GaugeController.vy#L224)

● GaugeController._change_gauge_weight (GaugeController.vy#L272)

● GaugeController.vote_for_gauge_weights (GaugeController.vy#L359)

● LiquidityGauge._update_liquidity_limit (LiquidityGauge#75)

● VotingEscrow.transfer_ownership (VotingEscrow.vy#L85)

● VotingEscrow.add_to_whitelist (VotingEscrow.vy#L103)

● VotingEscrow.remove_from_whitelist (VotingEscrow.vy#L110)

Users and blockchain monitoring systems can’t easily detect suspicious behaviors without
events.

Exploit Scenario
Eve compromises the PoolProxy contract. Bob does not notice the compromise and Eve is
able to change the parameter of the pool.

Recommendation
Short term, add events for all critical operations to help monitor the contracts and detect
suspicious behavior.

Long term, consider using a blockchain monitoring system to track any suspicious behavior
in the contracts. The system relies on the correct behavior of several contracts. A
monitoring system that tracks critical events would allow quick detection of any
compromised system components.

© 2020 Trail of Bits Curve DAO Assessment | 35

14. Race condition in removing addresses from whitelist and withdrawing
Severity: Informational Difficulty: High
Type: Timing Finding ID: TOB-CURVE-DAO-014
Target: VotingEscrow.vy

Description
The VotingEscrow contract provides a set of functions to add and remove contract
addresses in a whitelist. Once the admin calls remove_from_whitelist with a user’s
address, that user should no longer be able to perform any operation with tokens.

@public

def remove_from_whitelist (addr: address):

 assert msg.sender == self.admin

 self.contracts_whitelist[addr] = False

Figure 14.1: VotingEscrow.vy#L96-L99 .

This approach could be used by the admin to stop a contract that was upgraded by
malicious code. However, it is vulnerable to a race condition if the user removed from the
whitelist is monitoring unconfirmed transactions on the blockchain. If this user sees the
transaction containing the call before it has been mined, they can call withdraw to claim
their tokens (given that locks are expired), effectively circumventing the restrictions
imposed by this whitelist.

Exploit Scenario
Alice is the administrator of VotingEscrow . She whitelists Bob's multisig wallet. However,
an attacker takes control of it (either using a vulnerability in the contract or compromising
their users’ keys).

1. Alice calls remove_from_whitelist(Bob) . This forbids Bob's contract from

withdrawing his tokens.
2. The attacker sees the unconfirmed transaction and calls withdraw to claim his

tokens before Alice's transaction has been mined. He pays a higher fee to ensure
that his call will be mined before the remove_from_whitelist call.

3. If the attacker's transaction is mined before Alice’s, the removal of Bob's contract
from the whitelist will be ineffective since the attacker can still spend his tokens.

Recommendation
Short term, document how to deal with this kind of situation:

© 2020 Trail of Bits Curve DAO Assessment | 36

● Call remove_from_whitelist when tokens are still locked (so the attacker cannot
withdraw them, even after the locked expires).

● Increase the amount of gas when calling remove_from_whitelist in order to reduce
the window of opportunity.

Long term, carefully monitor the blockchain to prevent and mitigate these kinds of
front-running attacks, and create an incident response plan .

© 2020 Trail of Bits Curve DAO Assessment | 37

15. Lack of documentation is error-prone
Severity: Informational Difficulty: Low
Type: Auditing and Logging Finding ID: TOB-CURVE-DAO-015
Target: several contracts and readme

Description
The overall codebase lacks code documentation, high-level description, and examples. As a
result, the contracts are difficult to review and the likelihood of user mistakes is high.

Several behaviors are not documented, including:

● VotingEscrow.withdraw(_value) will withdraw the whole balance if _value is zero.

○ Additionally, allowing the withdrawal of only part of the locked amount is
error-prone and it is unclear whether this functionality is needed.

● VotingEscrow.deposit(value, unlock_time) has no documentation regarding
the expected value for unlock_time . It also fails if used with a value larger than
2**128 because the locked amounts are internally converted to int128 .

● _user_weight in GaugeController.vote_for_gauge_weights(_gauge_id,
_user_weight) should be between 0 and 10,000.

● The lock time in VotingEscrow.deposit is rounded down to weeks.
● Last_point.bias in VotingEscrow._checkpoint can be negative due to arithmetic

rounding.

The current high-level documentation would benefit from more details, including:

● User-level examples that describe who the different users are, how they interact

with the contracts, and concrete scenarios highlighting usage.
● The reasoning behind some design choices, such as:

○ EscrowVoting must not be tokenized.
○ Partial withdrawals from escrow are possible.

Exploit Scenario
Bob develops a multisig contract that calls VotingEscrow.withdraw . Bob is not aware
that withdraw(0) withdraws the whole balance. As a result, Bob’s contract does not work
as expected.

Recommendation
Short term, review and properly document these corner cases.

Long term, review the complete documentation of the contract and simplify itto prevent
misuse.

© 2020 Trail of Bits Curve DAO Assessment | 38

https://github.com/curvefi/curve-dao-contracts/blob/0e4152d4344d3615d9323d680663080c71708706/doc/readme.pdf

16. VotingEscrow ’s balanceOfAt and totalSupplyAt can return
di�ferent values for the same block
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-CURVE-DAO-016
Target: VotingEscrow.vy

Description
VotingEscrow ’s balanceOfAt and totalSupplyAt return their corresponding values for a
given block. Because the balance and supply can vary within the same block, these
functions can return different values when called on the current block.

VotingEscrow ’s balanceOfAt(addr, block) and totalSupplyAt(block) use a binary
search to return their values associated with the block :

 # Binary search
 _min: int128 = 0
 _max: int128 = self.user_point_epoch[addr]
 for i in range (128): # Will be always enough for 128-bit numbers
 if _min >= _max:
 break
 _mid: int128 = (_min + _max + 1) / 2
 if self.user_point_history[addr][_mid].blk <= _block:
 _min = _mid
 else :
 _max = _mid - 1

Figure 16.1: V otingEscrow.vy#L359-L369 .

 _min: int128 = 0
 _max: int128 = max_epoch
 for i in range (128): # Will be always enough for 128-bit numbers
 if _min >= _max:
 break
 _mid: int128 = (_min + _max + 1) / 2
 if self.point_history[_mid].blk <= _block:
 _min = _mid
 else :
 _max = _mid - 1
 return _min

Figure 16.2: VotingEscrow.vy#L324-L335 .

If a block is contained in point_history , the latest one will be used.

© 2020 Trail of Bits Curve DAO Assessment | 39

Points on the current block can be added indefinitely in point_history . As a result, a user
calling balanceOfAt or totalSupplyAt on the current block might not receive the latest
value.

The issue does not impact Aragon’s usage, as vote creation uses the previous block number
for its snapshot:

uint64 snapshotBlock = getBlockNumber64 () - 1 ; // avoid double voting in this very

block

Figure 16.2: Voting.sol#L284 .

Exploit Scenario
Bob creates a voting contract that relies on balanceOfAt and totalSupplyAt . Eve creates a
vote using block.number as a snapshot and corrupts the quorum percentage.

Recommendation
Short term, document that balanceOfAt and totalSupplyAt must not be called on the
current block.

Long term, properly test system properties when functions called in the same block or
within a short period.

© 2020 Trail of Bits Curve DAO Assessment | 40

https://github.com/aragon/aragon-apps/blob/94e18113497971a09697c773bc241a76c284c87a/apps/voting/contracts/Voting.sol#L284

17. No incentive to vote early in GaugeController
Severity: Medium Difficulty: Medium
Type: Data Validation Finding ID: TOB-CURVE-DAO-017
Target: GaugeController.vy

Description
GaugeController voting offers no incentive to vote early, so late-voting users have a
benefit over early voters.

Sinces all the votes are public, users who vote earlier are penalized because their votes are
known by the other participants. An attacker can learn exactly how many tokens are
necessary to change the outcome of the voting just before it ends.

Exploit Scenario
Bob votes for a vote gauge with half of its weight. His vote is winning, so he does not put in
the other half of its weight. Eve votes at the last second and changes the outcome of the
vote. As a result, Bob loses the vote.

Recommendation
Blockchain-based online voting is a known challenge. No perfect solution has been found
so far.

Short term consider either:

● Using a decreasing weight to create an early voting advantage
● Using a blind vote

Long term, properly document and test the voting process and closely follow the
community’s progress regarding on-chain voting.

References
● Aragon vote shows the perils of on-chain governance

© 2020 Trail of Bits Curve DAO Assessment | 41

https://www.evanvanness.com/post/184616403861/aragon-vote-shows-the-perils-of-onchain-governance

18. Several loops are not executable due to gas limitation
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-CURVE-DAO-018
Target:

Description
The codebase relies on several loops that can iterate hundreds of times with costly gas
consumption. This design is error-prone and may cause the contract to be trapped because
it runs out of gas.

For example, the LiquidityGauge and VotingEscrow _checkpoint functions both have
loops that can be iterated hundreds of times while changing state:

 for i in range (500):
 [..]
 self.period_checkpoints[p] = new_period_tim e

LiquidityGauge.vy#L115-L128 .

 for i in range (255):
 [...]
 self.point_history[_epoch] = last_point

VotingEscrow.vy#L158-L181.

These loops have code that writes state variables, which is the operation that consumes
the most gas.

Both loops are executed with every interaction of the contract. VotingEscrow may not be
called as often as LiquidityGauge over a long period of time. However, it’s unlikely there
will be a long period of time in which these contracts are not called.
Additionally, GaugeController iterates over the contract’s whole period in several
locations, such as:

 for i in range (500):
 _p += 1
 if _p == p:
 break
 self.type_weights[gauge_type][_p] = type_weight
 self.weight_sums_per_type[gauge_type][_p] = old_sum

GaugeController.vy#L203-L206 .

If the number of periods is large, the contract is trapped.

© 2020 Trail of Bits Curve DAO Assessment | 42

Exploit Scenario
Bob adds hundreds of gauges. As a result, most of the functions in GaugeController
cannot be executed anymore.

Recommendations
Short term

● Allow users to execute the history catch-up in VotingEscrow._checkpoint without

depositing or withdrawing the lock.
● Create a bot that will call LiquidityGauge.user_checkpoint and the

VotingEscrow’s history catch-up function at least once per week.
● Consider allowing iteration over the periods in multiple transactions in

GaugeController, and make sure the partial updates are sound.

Long term:

● Test functions for their gas limit:

○ Use brownie test with the --gas flag.
○ Use Echidna’s gas fuzzing feature .

● Update GaugeController ’s logic to work with a large number of periods.

© 2020 Trail of Bits Curve DAO Assessment | 43

https://github.com/crytic/building-secure-contracts/blob/master/program-analysis/echidna/finding-transactions-with-high-gas-consumption.md

19. Testing smart contract code in Brownie can be unreliable
Severity: Undetermined Difficulty: Medium
Type: Patching Finding ID: TOB-CURVE-DAO-019
Target: All the smart contracts and tests

Description
The Brownie testing system should be improved to make it more robust when dealing with
time-dependent and high-consumption gas tests.

When Brownie tests code that depends on the block number and timestamp in smart
contracts, it provides specific functions to simulate how they’re produced by the simulated
blockchain.

Figure 19.1: Simulating blocks in Brownie tests .

However, we found that the timestamp and block number increase even if the developer
does not use the instrumentation functions. This means any test that requires checking
whether the code can be executed correctly in the same block will not operate reliably.

Additionally, during testing, Brownie uses a default value for maximum gas which is
determined using the Eth.estimateGas function. This estimate could allow tests to pass

© 2020 Trail of Bits Curve DAO Assessment | 44

https://eth-brownie.readthedocs.io/en/stable/core-rpc.html#the-local-test-environment
https://web3py.readthedocs.io/en/stable/web3.eth.html#web3.eth.Eth.estimateGas

even if they consume a very large amount of gas, making them impractical to use when
deployed.

Exploit Scenario
Curve DAO contracts are developed without proper testing and as a result, the code is
deployed with a critical bug in it.

Recommendation
Short term:

● Modify Brownie to disallow automatic block timestamp and number increases.
● Set a reasonable default for the maximum gas used per transaction during tests.

Long term, use Echidna and Manticore to test your time-dependent and
high–gas-consuming code.

© 2020 Trail of Bits Curve DAO Assessment | 45

https://github.com/crytic/echidna
https://github.com/trailofbits/manticore

20. Aragon’s voting does not follow voting best practices
Severity: High Difficulty: Medium
Type: Data Validation Finding ID: TOB-CURVE-DAO-020
Target: Aragon’s Voting.sol

Description
Curve Dao uses Aragon for voting . Its voting logic is simple, but does not preventseveral
abuses that can occur with on-chain voting.

In particular, the voting contract has the following issues:

● No mitigation for quick vote and withdraw (similar to issue TOB-CURVE-DAO-004).
● No incentive to vote earlier (similar to issue TOB-CURVE-DAO-017).
● No mitigation for spam attacks. An attacker with vote creation rights can create

hundreds of thousands of votes, and will need only one to pass to succeed.

Exploit Scenario
Eve is a miner. She creates new votes to set a new minter on ERC20CRV
on every block. The other users cannot vote on all the votes. As a result, one vote is
accepted, and Eve takes control of ERC20CRV ’s minting.

Recommendation
Blockchain-based online voting is a known challenge. No perfect solution has been found
so far.

Short term, consider either:

● Improving Aragon’s voting to mitigate the listed issues, or
● Implementing a voting contract to replace Aragon's. Perform a security assessment

on the contract before deployment.

Long term, properly document and test the voting process. Closely Follow the community’s
progress regarding on-chain voting.

References

● Security Disclosure: Aragon 0.6 Voting ("Voting v1")
● Aragon vote shows the perils of on-chain governance

© 2020 Trail of Bits Curve DAO Assessment | 46

https://github.com/aragon/aragon-apps/blob/94e18113497971a09697c773bc241a76c284c87a/apps/voting/contracts/Voting.sol
https://aragon.org/blog/security-disclosure-voting-v1
https://www.evanvanness.com/post/184616403861/aragon-vote-shows-the-perils-of-onchain-governance

21. Race condition may result in users earning less interest than expected
Severity: Informational Difficulty: Medium
Type: Data Validation Finding ID: TOB-CURVE-DAO-021
Target: LiquidityGauge.vy

Description
The absence of a minimal interest rate might return a lower bonus for users than expected.

LiquidityGauge computes the interest earned by users. A bonus is applied to
VotingEscrow token’s holder:

def _update_liquidity_limit (addr: address, l: uint256, L : uint256):
 # To be called after totalSupply is updated
 _voting_escrow: address = self.voting_escrow
 voting_balance: uint256 = ERC20 (_voting_escrow). balanceOf (addr)
 voting_total: uint256 = ERC20 (_voting_escrow). totalSupply ()

 lim: uint256 = l * 20 / 100
 if voting_total > 0 :
 lim += L * voting_balance / voting_total * 80 / 100

 lim = min (l, lim)

Figure 2.1: LiquidityGauge.vy#L75-L88 .

The bonus depends on VotingEscrow ’s total supply, which can increase over time. If a user
makes a deposit in LiquidityGauge and his transaction is mined after the total supply is
increased, they can receive less bonus as expected.

Exploit Scenario
Bob calls LiquidityGauge and expects to receive a bonus of 10%. At the same time, Alice
locks a significant amount of tokens in VotingEscrow . Alice’s transaction is accepted before
Bob’s, so Bob receives a bonus of only 9%.

Recommendation
Short term, add a parameter to LiquidityGauge.deposit specifying the minimal amount
of interest to be received, or make sure off-chain components take this scenario into
account.

Long term, carefully consider the unpredictable nature of Ethereum transactions and
design your contracts so they don’t depend on transactions order. Additionally, always use
a lower or higher bound on asset conversions.

© 2020 Trail of Bits Curve DAO Assessment | 47

A. Vulnerability Classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or
software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking, or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for

© 2020 Trail of Bits Curve DAO Assessment | 48

client’s reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details, or must discover
other weaknesses in order to exploit this issue

© 2020 Trail of Bits Curve DAO Assessment | 49

B. Code Maturity Classifications
Code Maturity Classes

Category Name Description

Access Controls Related to the authentication and authorization of components.

Arithmetic Related to the proper use of mathematical operations and
semantics.

Assembly Use Related to the use of inline assembly.

Centralization Related to the existence of a single point of failure.

Upgradeability Related to contract upgradeability.

Function
Composition

Related to separation of the logic into functions with clear purpose.

Front-Running Related to resilience against front-running.

Key Management Related to the existence of proper procedures for key generation,
distribution, and access.

Monitoring Related to use of events and monitoring procedures.

Specification Related to the expected codebase documentation.

Testing &
Verification

Related to the use of testing techniques (unit tests, fuzzing, symbolic
execution, etc.).

Rating Criteria

Rating Description

Strong The component was reviewed and no concerns were found.

Satisfactory The component had only minor issues.

Moderate The component had some issues.

Weak The component led to multiple issues; more issues might be present.

Missing The component was missing.

© 2020 Trail of Bits Curve DAO Assessment | 50

Not Applicable The component is not applicable.

Not Considered The component was not reviewed.

Further
Investigation
Required

The component requires further investigation.

© 2020 Trail of Bits Curve DAO Assessment | 51

C. Code Quality
The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

General suggestions:

● Do not use one-letter variable names. The smart contract code uses variables
with very short names that can be difficult to parse when the code is modified or
reviewed. Use full names, e.g., weight instead of w .

● Split large functions into internal functions . Large functions such as
LiquidityGauge._checkpoint and VotingEscrow._checkpoint can be split into
internal functions (e.g., history catch-up, user value update, etc.). Having smaller and
simpler functions will simplify review and verification of the code.

● Do not use unnamed constants. The smart contract code uses certain constants
without naming them. Use proper names, e.g., BASE instead of 10 ** 18 .

ERC20CRV.vy :

● Consider correcting the RATE_REDUCTION_COEFFICIENT constant to be more
accurate. The exact coefficient used is 1414213562373095168, and the comment
accompanying its declaration indicates it should be equal to sqrt(2) * 1e18 .
However, a more accurate approximation of sqrt(2) * 1e18 would actually be
1414213562373095049 , which differs in the last three decimal places.

VotingEscrow.vy:

● Split the deposit functions into deposit creation, amount increase, and time
increase functions. Deposit handles the creation and increase of a deposit’s
amount and time simultaneously. As a result, the function has to handle too many
cases and is error-prone.

● Use find_block_epoch in balanceOfAt . BalanceOfAt duplicates the code of
find_block_epoch .

© 2020 Trail of Bits Curve DAO Assessment | 52

D. Token Integration Checklist
The following checklist provides recommendations when interacting with arbitrary tokens.
Every unchecked item should be justified and its associated risks understood.

For convenience, all Slither utilities can be run directly on a token address, such as:

slither-check-erc 0xdac17f958d2ee523a2206206994597c13d831ec7 TetherToken

General Security Considerations

❏ The contract has a security review. Avoid interacting with contracts that lack a
security review. Check the length of the assessment (aka “level of effort”), the
reputation of the security firm, and the number and severity of the findings.

❏ You have contacted the developers. You may need to alert their team to an
incident. Look for appropriate contacts on blockchain-security-contacts .

❏ They have a security mailing list for critical announcements. Their team should
advise users (like you!) when critical issues are found or when upgrades occur.

ERC Conformity
Slither includes a utility, slither-check-erc , that reviews the conformance of a token to
many related ERC standards. Use slither-check-erc to review that:

❏ Transfer and transferFrom return a boolean. Several tokens do not return a

boolean on these functions. As a result, their calls in the contract might fail.
❏ The name , decimals , and symbol functions are present if used. These functions

are optional in the ERC20 standard and might not be present.
❏ Decimals returns a uint8 . Several tokens incorrectly return a uint256 . If this is the

case, ensure the value returned is below 255.
❏ The token mitigates the known ERC20 race condition . The ERC20 standard has a

known ERC20 race condition that must be mitigated to prevent attackers from
stealing tokens.

❏ The token is not an ERC777 token and has no external function call in transfer
and transferFrom . External calls in the transfer functions can lead to reentrancies.

Slither includes a utility, slither-prop , that generates unit tests and security properties
that can discover many common ERC flaws. Use slither-prop to review that:

❏ The contract passes all unit tests and security properties from slither-prop .

Run the generated unit tests, then check the properties with Echidna and Manticore .

© 2020 Trail of Bits Curve DAO Assessment | 53

https://github.com/crytic/slither
https://github.com/crytic/blockchain-security-contacts
https://github.com/crytic/slither/wiki/ERC-Conformance
https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/crytic/slither/wiki/Property-generation
https://github.com/crytic/echidna
https://manticore.readthedocs.io/en/latest/verifier.html

Finally, there are certain characteristics that are difficult to identify automatically. Review
for these conditions by hand:

❏ Transfer and transferFrom should not take a fee. Deflationary tokens can lead to

unexpected behavior.
❏ Potential interest earned from the token is taken into account. Some tokens

distribute interest to token holders. This interest might be trapped in the contract if
not taken into account.

Contract Composition
❏ The contract avoids unneeded complexity. The token should be a simple

contract; a token with complex code requires a higher standard of review. Use
Slither’s human-summary printer to identify complex code.

❏ The contract uses SafeMath . Contracts that do not use SafeMath require a higher
standard of review. Inspect the contract by hand for SafeMath usage.

❏ The contract has only a few non–token-related functions. Non–token-related
functions increase the likelihood of an issue in the contract. Use Slither’s
contract-summary printer to broadly review the code used in the contract.

Owner privileges
❏ The token is not upgradeable. Upgradeable contracts might change their rules

over time. Use Slither’s human-summary printer to determine if the contract is
upgradeable.

❏ The owner has limited minting capabilities. Malicious or compromised owners
can abuse minting capabilities. Use Slither’s human-summary printer to review
minting capabilities, and consider manually reviewing the code.

❏ The token is not pausable. Malicious or compromised owners can trap contracts
relying on pausable tokens. Identify pauseable code by hand.

❏ The owner cannot blacklist the contract. Malicious or compromised owners can
trap contracts relying on tokens with a blacklist. Identify blacklisting features by
hand.

❏ The team behind the token is known and can be held responsible for abuse.
Contracts with anonymous development teams, or that reside in legal shelters
should require a higher standard of review.

Token Scarcity
Reviews for issues of token scarcity requires manual review. Check for these conditions:

❏ No user owns most of the supply. If a few users own most of the tokens, they can

influence operations based on the token's repartition.

© 2020 Trail of Bits Curve DAO Assessment | 54

https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#contract-summary
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary

❏ The total supply is sufficient. Tokens with a low total supply can be easily
manipulated.

❏ The tokens are located in more than a few exchanges. If all the tokens are in one
exchange, a compromise of the exchange can compromise the contract relying on
the token.

❏ Users understand the associated risks of large funds or flash loans. Contracts
relying on the token balance must carefully take in consideration attackers with
large funds or attacks through flash loans.

© 2020 Trail of Bits Curve DAO Assessment | 55

E. Fix Log
Swiss-Stake addressed issues TOB-CURVE-DAO-001 to TOB-CURVE-DAO-013 in their
codebase as a result of the assessment. Each of the fixes was verified by Trail of Bits. The
reviewed code is available in git revision 9ba007a5013dd46e66401bc552933407f0bee044 .

ID Title Severity Status

01 LiquidityGauge does not account for VotingEscrow ’s
balance updates

Medium Mitigated

02 LiquidityGauge does not account for VotingEscrow ’s
totalSupply updates

Medium Not fixed

03 Early users have a unfair advantage Medium Not fixed

04 GaugeController allows for quick vote and withdraw
voting strategy

Medium Mitigated

05 Adding the same gauge multiple times will lead to
incorrect sum of weights

Medium Fixed

06 Spam attack would prevent LiquidityGauge ’s integral
from being updated

Medium Risk
accepted

07 Minter user can confiscate any user tokens High Fixed

08 Mint and Burn events cannot be trusted Low Fixed

09 VotingEscrow ’s Admin can take whitelisted accounts
hostage

Medium Fixed

10 ERC20CRV is not initiated correctly with large name
and symbol

Low Fixed

11 Lack of two-step procedure for critical operations is
error-prone

High Fixed

12 Lack of value verification on decimals is error-prone Low Fixed

13 Lack of events is error-prone Informational Mitigated

14 Race condition in removing addresses from whitelist
and withdrawing

Informational WIP

15 Lack of documentation is error-prone Informational WIP

16 VotingEscrow ’s balanceOfAt and totalSupplyAt can Low WIP

© 2020 Trail of Bits Curve DAO Assessment | 56

https://github.com/curvefi/curve-dao-contracts/commit/9ba007a5013dd46e66401bc552933407f0bee044

return different values for the same block

17 No incentive to vote early in GaugeController Medium WIP

18 Several loops will not be executable due to gas
limitation

High WIP

19 Testing smart contract code in Brownie can be
unreliable

Undetermined WIP

20 Aragon’s voting does not follow voting best practices High WIP

21 Race condition can lead users to earn less interest
than expected

Informational WIP

© 2020 Trail of Bits Curve DAO Assessment | 57

Detailed Fix Log
This section includes brief descriptions of fixes implemented by Swiss-Stake after the end
of this assessment that were reviewed by Trail of Bits.

Finding 1: LiquidityGauge does not account for VotingEscrow ’s balance updates

This issue is mitigated by:

● Reducing the bonus created by the vote locks from 5 to 2.5.
● Adding a public kick function to adjust the working balance of any user abusing the

bonus.

We recommend updating the documentation to ensure users are aware of kick . Curve
DAO should consider developing a bot that will scan the account and call kick when
appropriate. This bot should be publically available to prevent TOB-CURVE-DAO-001 being
exploited.

Finding 2: LiquidityGauge does not account for VotingEscrow ’s totalSupply updates

This issue is not fixed.

Finding 3: Early users have a unfair advantage

To fix the issue, Curve DAO added a check preventing the bonus from being applies during
the first two weeks:

(block . timestamp > self.period_checkpoints[0] + BOOST_WARMUP)

LiquidityGauge.vy#L101.

s elf.period_checkpoints[0] will be zero if the liquidity gauge is deployed when the period
on the gauge controller is greater than or equal to 1. As a result, the check is incorrectly
implemented.

Additionally, the delay in the bonus activation will only work if early users share their
tokens enough to create a well-distributed reparition.

Finding 4: GaugeController allows for quick vote and withdraw voting strategy
This appears to be mitigated by disallowing changing weight votes more often than once in
10 days.

Finding 5: Adding the same gauge multiple times leads to incorrect sum of weights
This appears to be fixed by disallowing adding the same gauge twice.

© 2020 Trail of Bits Curve DAO Assessment | 58

Finding 6: Spam attack would prevent LiquidityGauge ’s integral from being updated
The client estimated the impact of this issue and accepted the risk.

Finding 7: Minter user can confiscate any user tokens

This appears to be fixed by:

● Disallowing the transfer of unapproved tokens by the minter .
● Disallowing setting the minter address more than once.

Finding 8: Mint and Burn events cannot be trusted

This appears to be fixed by:

● Disallowing transfer of unapproved tokens by the minter .
● Disallowing users to transfer to 0x0 .

Finding 9: VotingEscrow ’s Admin can take whitelisted accounts hostage
This appears to be fixed by allowing un-whitelisted addresses to withdraw from the voting
escrow contract.

Finding 10: ERC20CRV is not initiated correctly with large name and symbol
This appears to be fixed by requiring the use of Vyper 0.2.0 to resolve this issue.

Finding 11: Lack of two-step procedure for critical operations is error-prone
This appears to be fixed by implementing a two-step procedure in the following functions:

● VotingEscrow.transfer_ownership
● PoolProxy.set_admins

● GaugeController.transfer_ownership

Finding 12: Lack of value verification on decimals is error-prone
This appears to be fixed by validating the values obtained from calling the decimals
function.

Finding 13: Lack of events is error-prone
This appears to be mitigated by adding suitable events in the following functions:

● PoolProxy.set_admins

● PoolProxy.set_burner

● ERC20CRV.update_mining_parameters

● ERC20CRV.set_minter

● ERC20CRV.set_admin

© 2020 Trail of Bits Curve DAO Assessment | 59

● GaugeController.transfer_ownership

● GaugeController._change_type_weight

● GaugeController._change_gauge_weight

● GaugeController.vote_for_gauge_weights

● LiquidityGauge._update_liquidity_limit

However, events associated with important operations in VotingEscrow are missing.

Swiss-Stake is still working to fix the remaining issues.

© 2020 Trail of Bits Curve DAO Assessment | 60

